123 research outputs found

    The rotating wave system-reservoir coupling: limitations and meaning in the non-Markovian regime

    Get PDF
    This paper deals with the dissipative dynamics of a quantum harmonic oscillator interacting with a bosonic reservoir. The Master Equations based on the Rotating Wave and on the Feynman-Vernon system--reservoir couplings are compared highlighting differences and analogies. We discuss quantitatively and qualitatively the conditions under which the counter rotating terms can be neglected. By comparing the analytic solution of the heating function relative to the two different coupling models we conclude that, even in the weak coupling limit, the counter rotating terms give rise to a significant contribution in the non--Markovian short time regime. The main result of this paper is that such a contribution is actually experimentally measurable and thus relevant for a correct description of the system dynamics.Comment: 14 pages, 3 figure

    Thermal effects in the magnetic Casimir-Polder interaction

    Full text link
    We investigate the magnetic dipole coupling between a metallic surface and an atom in a thermal state, ground state and excited hyperine state. This interaction results in a repulsive correction and - unlike the electrical dipole contribution - depends sensitively on the Ohmic dissipation in the material

    Quantum theory of heating of a single trapped ion

    Get PDF
    The heating of trapped ions due to the interaction with a {\it quantized environment} is studied {\it without performing the Born-Markov approximation}. A generalized master equation local in time is derived and a novel theoretical approach to solve it analytically is proposed. Our master equation is in the Lindblad form with time dependent coefficients, thus allowing the simulation of the dynamics by means of the Monte Carlo Wave Function (MCWF) method.Comment: 4 pages, 3 figure

    Misbelief and misunderstandings on the non--Markovian dynamics of a damped harmonic oscillator

    Full text link
    We use the exact solution for the damped harmonic oscillator to discuss some relevant aspects of its open dynamics often mislead or misunderstood. We compare two different approximations both referred to as Rotating Wave Approximation. Using a specific example, we clarify some issues related to non--Markovian dynamics, non--Lindblad type dynamics, and positivity of the density matrix.Comment: 6 pages, 2 figures, added info: submitted to J. Opt. B: Quantum and Semiclass. Opt., Special Issue of the 10th Central European Workshop on Quantum Optics, reference added, discussion clarifie

    Lindblad and non--Lindblad type dynamics of a quantum Brownian particle

    Get PDF
    The dynamics of a typical open quantum system, namely a quantum Brownian particle in a harmonic potential, is studied focussing on its non-Markovian regime. Both an analytic approach and a stochastic wave function approach are used to describe the exact time evolution of the system. The border between two very different dynamical regimes, the Lindblad and non-Lindblad regimes, is identified and the relevant physical variables governing the passage from one regime to the other are singled out. The non-Markovian short time dynamics is studied in detail by looking at the mean energy, the squeezing, the Mandel parameter and the Wigner function of the system.Comment: 13 pages, 4 figures, v2:added discussion on Wigner function, squeezing, and Mandel paramete
    corecore